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Abstract:

A mathematical study was conducted to investigate the buckling of isotropic steel plates
using instability theories. The First-Order Shear Deformation Theory (FSDT) and
Higher-Order Shear Deformation Theory (HSDT) were employed to account for shear
effects. These latter theories were adopted because they consider shear deformation with
high precision, unlike classical theories that neglect this important action. The
equilibrium equations, derived from Hamilton's principle, were used, and Navier-type
solutions were preferred to calculate buckling loads under uniaxial or biaxial loading.
Parametric variations and different buckling modes were investigated, and the results
showed excellent agreement with existing references. The main objective of this study in
civil engineering is to continuously find mathematical formulations to solve plate
buckling problems with extreme accuracy and to predict buckling behavior in
simulations, mimicking what happens to metallic structures.

Keywords: Plate Buckling-Elastic Instability-Isotropic Metal Plate-First-Order Shear
Deformation Theory (FSDT)-Higher-Order Shear Deformation Theory (HSDT).
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1. Introduction

Steel construction, the second most common method after reinforced concrete, is gaining
significant popularity due to its rapid execution and versatility. As countries around the
world increasingly adopt steel construction techniques, there is a noticeable trend of
national and private enterprises investing in this sector to stimulate economic growth.
This shift can be attributed to the rise in global industrial and energy demands, which has
led to a significant increase in the construction of steel structures such as factories,
warehouses, and infrastructure projects.Steel construction involves the prefabrication and
assembly of various components, which are scientifically referred to as beams, columns,
and plates. The advantages of steel, including its high strength-to-weight ratio and
durability, make it an ideal choice for modern construction practices. In this context, this
study examines buckling instability in steel plates, which is a critical consideration in
ensuring structural integrity and safety [1].

To address plate buckling effectively, appropriate theoretical frameworks are employed,
including Classical Plate Theory (CPT), First-Order Shear Deformation Theory (FSDT),
and Higher-Order Shear Deformation Theory (HSDT). These theories facilitate the
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derivation of equilibrium equations that are essential for solving buckling problems and
determining the critical buckling load. The study specifically analyzes isotropic and
orthotropic rectangular plates using CPT as well as various HSDT models. By employing
Navier's method to solve the governing equations, the research evaluates critical buckling
loads (Ncr) across different plate thicknesses.A thorough discussion is provided on the
methodologies for calculating the most accurate buckling loads, including the
implications of material properties and geometric configurations on the buckling behavior
of plates. The findings contribute valuable insights to the field of structural engineering,
particularly in optimizing the design of steel structures to mitigate the risks associated
with buckling instability [2].

In FSDT, a correction factor is used, which approximates, through a Taylor series, the
ratio of 5/6. In contrast, in HSDT, different functions are employed to estimate the shear
effect, often in the form of trigonometric or hyperbolic functions, among others. For this
reason, in this work, we propose a new correction factor that depends on material
parameters (such as Poisson's ratio). In both FSDT and HSDT, we derived a new function
from the combinatorial combination of the two declared types of functions. The precision
of the calculations is well demonstrated in the results, showing a perfect agreement with
the expected outcomes. There are many steel structure regulations for estimating the local
buckling of plates or panels, but they often use overly high correction factors. This leads
to problems of underestimation or excessive construction costs. However, real studies
that use mathematical analogies produce accurate results. Based on these results, we can
ensure better calculation regulations through empirical formulas.

2. Mathematical model
Buckling is easily solved using elasticity theories known in material strength and matrix
calculations in civil engineering structures.
The displacement field is expressed as follows:

UGy, 2) = uo(xy) + 252 + 2.f(z). 2=
U(x,y,2) = vo(x, y)+z—+zf()6WS (1)
W y,2) = wa (o y)+w 6, 3) s, y)
With: Angular rotation about the x or y axis.

f(z) is the function used to estimate the shear deformation.
] ]
(=552 10, =5
The strain field is expressed according to the laws of elasticity as follows:

)
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The stress tensor is:

IfO-X\I [§11 Qg O 0 0] |( :X \I
Oy Q. Q,, 0 O O} %
Ol={Tr=|0 o Qs 0 0[{Zwl @
Lszl | 0 0 0 Qs5 _0 | [ 2yx, |
TyZ) 0 0 0 0 Q44J kZsz)
Given that the material is isotropic, then:
— E9 — — — — —
Q2 = (1_—\92);Q11 = Q22 = Q6 = Q55 = Qa4 =
E(1-9)
20-9) ©)
Returning to Hamilton's principle:
J,(8U + 8V)dt = 0 (6)
Such that:
oU = f(o-ij8€i]' + 2T1]8YI])dV (7)
[ (2W)? oW ow
8V = f( 2 8 (6x,y) + ZrijM ( 0x 0y ) (8)
Given that the resulting forces and moments are expressed in the form: :
h
(Nll = iO'ide

2
h

NP]/[ = f;o'i]'MdZ
! R ©)
Mij = fé O'i]'. zdz

2
h

M_ (2
Mij = f__hO'i]'M.ZdZ

\ ;
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It is straightforward to obtain the equilibrium equations. The equilibrium equations are:

(s, ONx | ONxy
ou: ~ T 3y =0
sv: Dy Do
ay ax
_ aZMb a2Mb,  a2MP M _
{ Swy: +266+62+N(W)_0
2MS 2MS 2\MS
s Mxy+66M2 +6Q"Z+6QyZ+NM 0
& 99§ M —
Sy ~ T 5 3y +NY(w) =0
(10)
En utilisant la technique de Navier, les solutions pour les plaques simplement appuyées
sont obtenues
(u(x,y) = Umncos(tx) * sin(py)
v(x,y) = Vmnsin(tx) * cos(py)
wy, (%, y) = Wbmnsin(tx) * sin(py) (11)
| wy(x,y) = Wsmnsin(tx) * sin(py)
w,(x,y) = Wamnsin(tx) * sin(py)
Where:
t=—" p=— (12)
(m,n )sont les modes de flambement
The reduced stiffness matrix is written as:
Ki; = N°N" Kip Kiz| (Wi 0
K12 Ky Kz |{Xmn (= {0} (13)
K13 K23 K33 Ymn 0
Calculate the determinant of this matrix in order to solve for the buckling load.
N! = solve [DET(Kij)] = 0 (14)
When:
NV = a? + X * 2 (15)
The dimensionless critical load is given by the following relation:
N1a?
Ncr — (16)
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The parameters for the plate analysis include its length (a), width (b), and thickness (h).
Notably, when (X=1), loading occurs in both directions, whereas when (X=0), loading is
applied in only one direction.
3. Results and Discussion
Comparison of Models and Results:

To confirm the accuracy of our mathematical model, it is essential to compare it with
existing models found in the literature. Table 1 presents the shear correction factors for
the FSDT theory alongside three higher-order shear functions. The isotropic plate in
question is characterized by the following mechanical properties: Young's modulus
E=200 GPa. And Poisson's ratio v=0.3

The HSDT functions and shear correction factors for FSDT are:

KARAMA [3]
f(z) = z * e_z(g)z 17)
AMBARTSUMIAN [4]
f) =22 18)
Touratier [5]
f(z) = 2sin (%) (19)
FSDT 1 [6]
Ks = 0.291 (20)
FSDT 2 [7]
Ks = % (21)
FSDT 3[7]
Ks = ﬁ (22)
Present work :
For FSDT:
Ks = 6—5194 (23)
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For HSDT:

f(z) = z — h * arctang (Lh) + g * (%)2 (24)

TT*

Table 1. Comparison of the Critical Buckling Load Ncr for Biaxial Loading (X=1) of a
Square Isotropic Steel Plate (a=b) as a Function of the Geometric Ratio (a/h) To
compare the literature with the new work in order to validate our calculation model.

Mode The geometric ratio ().

2 | (L,1) | Theories 5 10 20 50 100

-g _g TSDT [8] 1513 |1.727 |1.791 |1810 |1.812

3 REDDY(HSDT) [9] | 1.475 | 1.711 | 1.782 | 1.803 | 1.806

a MINDLIN(FSDT)[6] | 1.474 | 1.711 |1.782 |1.803 | 1.806
CPT [10] 1.807 |1.807 |1.807 |1.807 |1.807

c (1,1) | FSDT 1474 1711 |1.782 |1.804 |1.807

D

@ = HSDT 1.741 |1.732 |1.788 |1.805 | 1.807

o

Table 2. Comparison of the Critical Buckling Load Ncr for a Square Isotropic Steel
Plate (a=b) Under Unidirectional Loading (X=0), as a Function of the Geometric Ratio
(a/h) To compare the literature with the new work in order to validate our calculation

model.
Mode The geometric ratio ().

2 ,| (1,1) |[Theories 5 10 20 50 100
-g 'g TSDT [8] 3.026 | 3.454 3.582 |3.621 | 3.625
S 3 REDDY(HSDT) [9] | 2.951 |3422 |3564 |3.606 |3.613
= MINDLIN(FSDT)[6] | 2.949 |3.422 | 3.564 |3.607 | 3.613

CPT [10] 3.615 |3.6152 | 3.615 |3.615 | 3.615
® (1,1) | FSDT 2089 | 3444 |3587 |3.623 |3.624
§ = HSDT 3.078 |3.461 |3573 |3.607 |3.611

Table 3. Variation of the Critical Buckling Load Ncr for Uniaxial Loading (X=1) of a
Square Isotropic Steel Plate with (a=5h) and (a=b) as a Function of the Buckling Mode

(n)

Mode (m, n) FSDT HSDT FSDT HSDT
(X=0) (X=0) (X=1) (X=1)

w1 3.4999 3.078 1.492 1519

(1,2) 14.454 15.777 2.893 3.143

(13) 42.439 48.623 4.265 4.843

(1,4 89.401 106.763 5.201 6.256
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Figure 1. Variation of the Critical Buckling Load Ncr or Uniaxial Loading (X=0) and Biaxial
Loading (X=1) of a Rectangular Isotropic Steel Plate with (a=5h) as a Function of the
Geometric Ratio (b/a).

Figure 2. Variation of the Critical Buckling Load Ncr or Uniaxial Loading (X=0) and Biaxial
Loading (X=1) of a Rectangular Isotropic Steel Plate with (a=20h) as a Function of the
Geometric Ratio (b/a).
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Figure 3. Variation of the Critical Buckling Load Ncr or Uniaxial Loading (X=0) and Biaxial
Loading (X=1) of a Rectangular Isotropic Steel Plate with (a=b) as a Function of the Geometric
Ratio (a/h).
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Figure 4. Variation of the Critical Buckling Load Ncr or Uniaxial Loading (X=0) and Biaxial
Loading (X=1) of a Rectangular Isotropic Steel Plate with (b=5a) as a Function of the
Geometric Ratio (a/h).
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4. Results and Discussions:
The analysis presented in Table 1 demonstrates that our mathematical model has been
validated by aligning closely with findings from existing literature. This validation is
particularly evident when examining the behavior of square plates, where the dimensions
are equal (a = b). In such cases, the critical buckling load is observed to increase as the
ratio of the plate's side length (a) to its thickness (h) also increases. This relationship holds
true across different functions utilized within Classical Plate Theory (CPT), specifically
for a scenario where the dimension of the plate is significantly larger than its thickness,
represented by the condition a = 100h.
Furthermore, when comparing different theoretical approaches, the First-Order Shear
Deformation Theory (FSDT) vyields results that are closely aligned with those derived
from Higher-Order Shear Deformation Theory (HSDT), especially when the correction
coefficient Ks approximates 5/6. However, notable discrepancies arise within the HSDT
results when the aspect ratio is set to a = 5h, indicating that the choice of theory can have
significant implications on the outcomes, particularly in this range.
The analysis also reveals that the critical buckling load for a square plate subjected to
uniaxial loading is significantly greater—approximately double—that of a plate
experiencing biaxial loading conditions. This difference emphasizes the importance of
loading conditions on buckling behavior and critical load determination. Additionally, it
is observed that as the buckling modes vary, the critical load continues to increase;
however, differences among the theoretical predictions become evident, as summarized
in Table 3.
In the case of rectangular plates, the behavior is slightly different. The critical load
decreases as the ratio of width to length (b/a) increases, stabilizing once this ratio reaches
approximately 4. At lower values of the (a/h) ratio, the discrepancies between various
theoretical predictions become more pronounced; however, as this ratio increases, the
results from different theories converge. For both square and rectangular plates, the
critical load Ncr consistently rises with increasing ratios of (a/h), reaching a stabilization
point around a value of 45. Initially, there is considerable variation among different
theories; however, as the analysis progresses, these differences diminish, indicating a
convergence of results.
Another critical aspect of this study is the improvement in the shear deformation function
f(z), which plays a vital role, particularly in thin plates. This enhancement is visually
represented in Figures 3 and 4, highlighting its impact on buckling behavior. The results
obtained from this analysis not only contribute to our understanding of buckling
phenomena but also serve to validate whether existing regulations and guidelines are
applicable in practical scenarios.
Moreover, in situations where calculation methods or technical regulations are lacking,
engineers must remain proactive. They cannot halt their work; instead, they must seek
alternative solutions to accurately calculate buckling and critical buckling loads. This
includes applying a slight amplification to the critical load Ncr in order to estimate the
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dimensions of metallic panels or plates. This is particularly relevant in simpler structures,
such as hydraulic and oil stations, where efficient design is crucial.

For instance, when considering thick plates, the first mode of buckling is often sufficient
for analysis. In these cases, the results tend to be consistent, allowing engineers to focus
on determining the critical Ncr alongside the ratios a/b and a/h, where a and b denote the
dimensions of the plate and h represents its thickness. This approach streamlines the
design process and ensures that structural integrity is maintained throughout various
loading conditions.

5. Conclusion:

1-

This work reveals several key findings:

Impact of Geometric Parameters: The geometric parameters of a plate—specifically
its length, width, and thickness—play a crucial role in determining its critical buckling
load. These parameters directly influence the load-bearing capacity of the plate,
underscoring the importance of careful consideration during the design process.
Validity of Plate Theories: All evaluated plate theories demonstrate validity, albeit
with some degree of uncertainty. This variability emphasizes the necessity of selecting
the most appropriate model for specific applications. A careful choice of theory can
significantly enhance the accuracy of predictions regarding buckling behavior,
ultimately leading to safer and more effective engineering solutions.

Importance of Shear Deformation Functions: Within the framework of Higher-Order
Shear Deformation Theory (HSDT), the selection of shear deformation functions is
critical. These functions are essential for accurately capturing shear effects in isotropic
plates, which in turn has a significant impact on the overall accuracy of the model.
This highlights the need for further exploration and validation of different shear
functions to optimize buckling analyses.

Correction Coefficient in FSDT: For the First-Order Shear Deformation Theory
(FSDT), it has been observed that using a correction coefficient of approximately 5/6
yields results that closely align with those obtained from HSDT. This adjustment
effectively accounts for shear effects, thereby enhancing the reliability of the FSDT in
practical applications.

Feasibility of Buckling Analysis: The buckling analysis of isotropic steel plates using
various plate theories is not only feasible but also provides reliable methodologies for
predicting buckling loads. These predictions are essential for design and safety
assessments in a wide range of engineering applications, including civil and structural
engineering.

Regulatory Implications: This study contributes to the verification and creation of
technical regulations within the field of structural design. The findings can inform the
development of new guidelines, ensuring that they reflect the latest advancements in
plate buckling theory and practice.
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